Within-host pathogen dynamics: Some ecological and evolutionary consequences of transients, dispersal mode, and within-host spatial heterogeneity
نویسندگان
چکیده
The ecology and evolution of infectious disease occur at multiple spatial scales. In this paper, we explore some consequences of transient dynamics of pathogens within individual hosts. If infected hosts die quickly, relative to internal equilibration in pathogen dynamics, within-host transients may influence between-host transmission and spread. We develop a formulation for characterizing the overall growth rate of an infectious disease, which includes both within-host dynamics and between-host transmission, when the disease is sufficiently rare that the supply of available hosts can be viewed as a constant. This formulation is analogous to the familiar Euler equation in age-structured demography. We suggest that the pathogen growth rate estimated this way may be a better measure of pathogen fitness than is R0. We point out that even simple models of within-host pathogen dynamics can have phases in which numbers overshoot the final equilibrium, and that such phases may influence pathogen evolution. We touch on the potential importance of within-host spatial heterogeneities in pathogen dynamics, and suggest that an interesting question for future work is understanding the interplay of spatial structure and transient dynamics in the within-host infection process.
منابع مشابه
Heterogeneity shapes invasion: host size and environment influence susceptibility to a nonnative pathogen.
Theoretical study of invasion dynamics has suggested that spatial heterogeneity should strongly influence the rate and extent of spreading organisms. However, empirical support for this prediction is scant, and the importance of understanding heterogeneity for real-world systems has remained ambiguous. This study quantified the influence of host and environmental heterogeneity on the dynamics o...
متن کاملEvolution of Pathogen Specialisation in a Host Metapopulation: Joint Effects of Host and Pathogen Dispersal
Metapopulation processes are important determinants of epidemiological and evolutionary dynamics in host-pathogen systems, and are therefore central to explaining observed patterns of disease or genetic diversity. In particular, the spatial scale of interactions between pathogens and their hosts is of primary importance because migration rates of one species can affect both spatial and temporal...
متن کاملEcological and evolutionary implications of spatial heterogeneity during the off-season for a wild plant pathogen
While recent studies have elucidated many of the factors driving parasite dynamics during the growing season, the ecological and evolutionary dynamics during the off-season (i.e. the period between growing seasons) remain largely unexplored. We combined large-scale surveys and detailed experiments to investigate the overwintering success of the specialist plant pathogen Podosphaera plantaginis ...
متن کاملSpecialization for resistance in wild host-pathogen interaction networks
Properties encompassed by host-pathogen interaction networks have potential to give valuable insight into the evolution of specialization and coevolutionary dynamics in host-pathogen interactions. However, network approaches have been rarely utilized in previous studies of host and pathogen phenotypic variation. Here we applied quantitative analyses to eight networks derived from spatially and ...
متن کاملThe dynamics of disease in a metapopulation: The role of dispersal range
The establishment and spread of a disease within a metapopulation is influenced both by dynamics within each population and by the host and pathogen spatial processes through which they are connected. We develop a spatially explicit metapopulation model to investigate how the form of host and disease dispersal jointly influence the probability of disease establishment and invasion. We show that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006